Rwanda Biophysical Environment and Soil Health Problematic

Rwanda Soil health Consortium (RSHC)

By Rushemuka Pascal (From RAB)

National Territory Spatial Organization

Rwanda: Altitudinal Zones/major AEZs

- Highlands: >1900 m.
- Midlands: 1600-1900
- Low lands: 925-1600
- These altidunal elevation classes correspond to the limits of majors crops

Rwanda Spatial Organisation

- Criteria
 - Elevation
 - Climate
 - Rainfall
 - Temperature
 - Parent material

Existing Soil RESOURCE INFORMATION

Rwanda soil map 1: 250,000: INEAC classification (1960-1981)

Soil Map of Rwanda 1:50,000: Soil Taxonomy (1980-1991, 2000-2002)

Farmers' soil knowledge

Large scale aerial photos

Orthophoto: Elaborated from precise aerial photos (5 x 5 m)

The need of developing site and soil-specific technologies: Thinking globally and act locally.

Soil health problems and possible solutions

Erosion and Erosion Control

• Unprotected land

Bench Terraces

Erosion and Erosion Control

From unproductive to productive soils: the role of ISFM INPUTS

Unlimed soil: 0 lime + 0 FYM+ fertilizers Limed soil: lime + FYM+ fertilizers

Soil fertility management: Mother and Baby demonstration plots

Synthesis

AEZ	Elevatio n (m)	Relief	<i>Temperatu</i> <i>re</i> (C°)	Rainfa ll (mm)	Dry season (mont h)	Major limitatio n	Major solutions
Highlan ds	> 1900,	Mountaino us	15- 17	1250- 2000	1 to 2	Slope ⁺⁺⁺ Acidity ⁺ ++	Erosion control +Liming + manuring+ fertilizers
Midland s	1,600- 1,900	Dissected Plateau	17-20	1000- 1250	3 t0 4	Slope ⁺⁺ Acidity ⁺ +	Erosion control + liming + manuring + fertilizers
Lowlan ds	< 1,600	Pediplain	20-21	700 - 1000	4 t0 5	Eratic rainfall+ ++	Manuring + fertilizers

Concluding remarks

- From a scientific point of view solutions for sustainable development are known in each relavant scientific discipline)
- The accessibility of this information so that efficient investiment is achieved is the major problem.
- Policy makers use very little existing scientific information, at the same time researchers produce very little scientific information that is directely usable
- This is the raison d'être/essence of the RSHC.